
Piecewise smooth regression

by bootstrapped binary segmentation

Kate McDaid1 and Florian Pein1

1Department of Pure Mathematics and Mathematical Statistics, University of
Cambridge

September 15, 2024

We provide non-parametric regression estimators for piecewise smooth signals. The main func-
tion BinSegBstrap estimates a piecewise smooth signal by applying a bootstrapped test recursively
(binary segmentation approach). A single bootstrapped test for the hypothesis that the underlying
signal is smooth versus the alternative that the underlying signal contains at least one change-point
can be performed by the function BstrapTest. A single change-point is estimated by the function
estimateSingleCp. Parts of this work were inspired by [Gijbels and Goderniaux, 2004].

1 Model

We are considering an equally spaced fixed-design non-parametric regression model given by

Yi = f(xi) + ϵi,

for i = 1, . . . , n. Here f is an unknown regression function defined on the unit interval [0, 1], xi are
equally spaced fixed-design points, that is xi = i/n, ϵi are independent and identically distributed
regression errors with mean 0 and variance σ2, σ2 > 0, and Yi is the noisy observation of f at xi.
The regression function f is defined to be piecewise smooth, i.e.

f(x) =

K∑
k=0

fk(x)1τk≤x<τk+1
.

Here K is the number of change-points, 0 := τ0 < τ1 < · · · < τK < τK+1 := 1 are the change-point
functions and fk are smooth signals with fk−1(τk) ̸= fk(τk).

2 estimateSingleCp: Estimation of a single change-point

Let us assume for the moment that we just want to estimate a single change-point, this meansK = 1.
Let h be a given bandwidth (see the following subsection for how to choose h by crossvalidation).
We estimate the change-point location τ1 by the maximum of the differences of left and right sided

1

running means. More precisely, let b(h) := ⌊nh⌋ be the window size for the running means. We then
define

t̂1(h) := argmax
t=b(h)+1,...,n−b(h)

1

b(h)

b(h)∑
i=1

Yt+i−1 −
1

b(h)

b(h)∑
i=1

Yt−i

and τ̂1(h) := t̂1(h)/n. We then estimate f0 and f1 by kernel smoothers with bandwidth h. And the

jump size is defined by f̂1(τ̂1)− f̂0(τ̂1).
This is implemented in the function estimateSingleCp and the resulting estimation is shown in Figure
1.

set.seed(1)

n <- 100

signal <- sin(2 * pi * 1:n / n)

signal[51:100] <- signal[51:100] + 5

y <- rnorm(n) + signal

call of estimateSingleCp with fixed bandwidth 0.1

est <- estimateSingleCp(y = y, bandwidth = 0.1)

estimated location

est$cp

[1] 51

estimated jump size

est$size

[1] 4.496773

plot of observations, true and estimated signal

plot(y, pch = 16, col = "grey30")

lines(signal)

lines(est$est, col = "red")

2.1 Bandwidth selection by crossvalidation

The bandwidth and hence the window sizes of the running means are selected by crossvalidation
(unless the user input is a single bandwidth as above). Let h1, . . . , hm be potential bandwidths. For
each bandwidth hj we compute window size b(hj) and the estimated change-point location τ̂1(hj).
The bandwidth is then evaluated by the crossvalidation quantity

CV (h) =

i0∑
i=1

{ĝ−i
1 (xi)− Yi}2 +

n∑
i=i0+1

{ĝ−i
2 (xi)− Yi}2,

with i0 = max{i : xi ≤ τ1(hj)} and where ĝ−i
1 (·) and ĝ−i

2 (·) denote one sided kernel estimators on
the intervals [0, τ̂1(hj)] and (τ̂1(hj), 1], respectively, using bandwidth hj and disrecarding the i-th

2

0 20 40 60 80 100

0
2

4
6

Index

y

Figure 1: Observations (grey points), underlying signal (black line) and estimated signal (red line).

3

data point. The cross-validated bandwidth selector is then defined as

ĥCV = argmin
h∈{h1,...,hm}

CV (h).

This criterion was suggested in [Gijbels and Goderniaux, 2004].
Note that the test has almost no power when the bandwidth for the kernel smoother is too small,
since then a change-point can be approximated well by a quickly changing smooth function.
We now recall estimateSingleCp without a user given bandwidth. Instead, the bandwidth will be
determined by crossvalidation. The resulting fit is shown in Figure 2.

set.seed(1)

n <- 100

signal <- sin(2 * pi * 1:n / n)

signal[51:100] <- signal[51:100] + 5

y <- rnorm(n) + signal

call of estimateSingleCp with crossvalidated bandwidth

est <- estimateSingleCp(y = y)

crossvalidated bandwidth

est$bandwidth

[1] 0.1482495

estimated location

est$cp

[1] 51

estimated jump size

est$size

[1] 4.37739

plot of observations, true and estimated signal

plot(y, pch = 16, col = "grey30")

lines(signal)

lines(est$est, col = "red")

3 BstrapTest : Bootstrap test for a single change-point

The function BstrapTest tests whether the underlying signal is smooth or contains at least one
change-point, i.e.

H0 : K = 0 vs. H1 : K ̸= 0.

As test statistic we simply use absolute value of the jump size of the previous estimator, i.e.

T :=
∣∣∣f̂1(τ̂1)− f̂0(τ̂1)

∣∣∣ .
4

0 20 40 60 80 100

0
2

4
6

Index

y

Figure 2: Observations (grey points), underlying signal (black line) and estimated signal (red line).

5

Critical value and p-value are obtained by boostrapping: We estimate the errors by subtracting
the previous estimate f̂ from the observations. From these estimated errors we resample with
replacement ϵ∗1, . . . , ϵ

∗
n. And defined our bootstrapped observations as these errors plus a usual

kernel estimate of the observations with a crossvalidated bandwidth. Finally, we compute for these
observations our test statistic and repeat the procedure B times. This approach was proposed in
[Gijbels and Goderniaux, 2004] and more details can be found there as well.

set.seed(1)

n <- 100

signal <- sin(2 * pi * 1:n / n)

signal[51:100] <- signal[51:100] + 5

y <- rnorm(n) + signal

test <- BstrapTest(y = y)

whether the test rejected

test$outcome

[1] TRUE

p-Value

test$pValue

[1] 0

4 BinSegBstrap: Estimates a piecewise smooth signal

To estimate a signal with arbitary many changes we use binary segmentation and call the previous
test recursively. The final estimator is given by kernel smoothing on each segment separately. To
this end, we use a bandwidth that is jointly selected by crossvalidation.
More precisely, binary segmentation is a generic technique for multiple change-point detection in
which we initially search the entire data-set for one change-point. Once a change-point is detected
the data are split into two subsegments defined by the detected change point. A similar search
is performed on both sub-segment possibly resulting in further splits. Recursion on a given seg-
ment continues until the null hypothesis that the underlying signal is smooth on the considered
subsegment is accepted. A pseudocode for the method of standard binary segmentation is given in
[Fryzlewicz, 2014].
This methodology can be applied by the function BinSegBstrap. Figure 3 shows the estimated signal
for a function with three true change-points.

set.seed(1)

n <- 200

signal <- sin(2 * pi * 1:n / n)

signal[51:100] <- signal[51:100] + 5

signal[151:200] <- signal[151:200] + 5

6

y <- rnorm(n) + signal

est <- BinSegBstrap(y = y)

estimated change-points

est$cps

[1] 51 101 151

plot of observations, true and estimated signal

plot(y, pch = 16, col = "grey30")

lines(signal)

lines(est$est, col = "red")

References

[Fryzlewicz, 2014] Fryzlewicz, P. (2014). Wild binary segmentation for multiple change-point detec-
tion. The Annals of Statistics, 42(6):2243–2281.

[Gijbels and Goderniaux, 2004] Gijbels, I. and Goderniaux, A.-C. (2004). Bootstrap test for change-
points in nonparametric regression. Journal of Nonparametric Statistics, 16(3-4):591–611.

7

0 50 100 150 200

−
2

0
2

4
6

8

Index

y

Figure 3: Observations (grey points), underlying signal (black line) and estimated signal (red line).

8

