stepR - Multiscale Change-Point Inference
Allows fitting of step-functions to univariate serial data where neither the number of jumps nor their positions is known by implementing the multiscale regression estimators SMUCE, simulataneous multiscale changepoint estimator, (K. Frick, A. Munk and H. Sieling, 2014) <doi:10.1111/rssb.12047> and HSMUCE, heterogeneous SMUCE, (F. Pein, H. Sieling and A. Munk, 2017) <doi:10.1111/rssb.12202>. In addition, confidence intervals for the change-point locations and bands for the unknown signal can be obtained.
Last updated 1 months ago
3.84 score 1 stars 58 scripts 530 downloadsBinSegBstrap - Piecewise Smooth Regression by Bootstrapped Binary Segmentation
Provides methods for piecewise smooth regression. A piecewise smooth signal is estimated by applying a bootstrapped test recursively (binary segmentation approach). Each bootstrapped test decides whether the underlying signal is smooth on the currently considered subsegment or contains at least one further change-point.
Last updated 3 years ago
2.00 score 3 scripts 281 downloadslowpassFilter - Lowpass Filtering
Creates lowpass filters which are commonly used in ion channel recordings. It supports generation of random numbers that are filtered, i.e. follow a model for ion channel recordings, see <doi:10.1109/TNB.2018.2845126>. Furthermore, time continuous convolutions of piecewise constant signals with the kernel of lowpass filters can be computed.
Last updated 3 years ago
1.48 score 1 packages 1 scripts 195 downloadscrossvalidationCP - Cross-Validation for Change-Point Regression
Implements the cross-validation methodology from Pein and Shah (2021) <arXiv:2112.03220>. Can be customised by providing different cross-validation criteria, estimators for the change-point locations and local parameters, and freely chosen folds. Pre-implemented estimators and criteria are available. It also includes our own implementation of the COPPS procedure <doi:10.1214/19-AOS1814>.
Last updated 2 years ago
1.00 score 1 scripts 269 downloads